• 高中数学大单元教学设计

    高中数学大单元教学设计[ 教学设计 ]

    教学设计 时间:2024-07-09 12:00:01 热度:550℃

    作者:丿Monster卩s冥彡 文/会员上传 下载docx

    简介:

    高中数学大单元教学设计作为一名老师,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?下面是小编收集整理的高中数学大单元教学设

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    高中数学大单元教学设计

    作为一名老师,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?下面是小编收集整理的高中数学大单元教学设计,仅供参考,希望能够帮助到大家。

    高中数学大单元教学设计1

    重点难点教学:

    1.正确理解映射的概念;

    2.函数相等的两个条件;

    3.求函数的定义域和值域。

    教学过程:

    1.使学生熟练掌握函数的概念和映射的定义;

    2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。

    教学内容:

    1.函数的定义

    设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的"任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的.一个函数(function),记作:,yfA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}fA?叫值域(range)。显然,值域是集合B的子集。

    注意:

    ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

    ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

    2.构成函数的三要素定义域、对应关系和值域。

    3、映射的定义

    设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

    4.区间及写法:

    设a、b是两个实数,且a

    (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

    (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

    5.函数的三种表示方法

    ①解析法

    ②列表法

    ③图像法

    高中数学大单元教学设计2

    一、单元教学内容

    (1)算法的基本概念

    (2)算法的基本结构:顺序、条件、循环结构

    (3)算法的基本语句:输入、输出、赋值、条件、循环语句

    二、单元教学内容分析

    算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的.能力,提高逻辑思维能力。

    三、单元教学课时安排:

    1、算法的基本概念3课时

    2、程序框图与算法的基本结构5课时

    3、算法的基本语句2课时

    四、单元教学目标分析

    1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

    2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

    3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

    4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    五、单元教学重点与难点分析

    1、重点

    (1)理解算法的含义

    (2)掌握算法的基本结构

    (3)会用算法语句解决简单的实际问题

    2、难点

    (1)程序框图

    (2)变量与赋值

    (3)循环结构

    (4)算法设计

    六、单元总体教学方法

    本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

    七、单元展开方式与特点

    1、展开方式

    自然语言→程序框图→算法语句

    2、特点

    (1)螺旋上升分层递进

    (2)整合渗透前呼后应

    (3)三线合一横向贯通

    (4)弹性处理多样选择

    八、单元教学过程分析

    1、算法基本概念教学过程分析

    对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

    2、算法的流程图教学过程分析

    对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

    3、基本算法语句教学过程分析

    经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    九、单元评价设想

    1、重视对学生数学学习过程的评价

    关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

    2、正确评价学生的数学基础知识和基本技能

    关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

    高中数学大单元教学设计3

    一、课题:

    人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

    二、指导思想与理论依据:

    《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

    三、教材分析:

    本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的.知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

    四、学情分析:

    在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

    五、教学目标:

    (一)教学知识点:

    1.对数的概念。

    2.对数式与指数式的互化。

    (二)能力目标:

    1.理解对数的概念。

    2.能够进行对数式与指数式的互化。

    (三)德育渗透目标:

    1.认识事物之间的相互联系与相互转化,2.用联系的观点看问题。

    六、教学重点与难点:

    重点是对数定义,难点是对数概念的理解。

    七、教学方法:

    讲练结合法八、教学流程:

    问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

    八、教学反思:

    对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

    对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

    高中数学大单元教学设计4

    【教学目的】

    (1)使学生初步理解集合的概念,知道常用数集的概念及记法

    (2)使学生初步了解“属于”关系的意义

    (3)使学生初步了解有限集、无限集、空集的意义

    【重点难点】

    教学重点:集合的基本概念及表示方法

    教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

    授课类型:新授课

    课时安排:1课时

    教具:多媒体、实物投影仪

    【内容分析】

    1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

    把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

    本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

    这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

    集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

    【教学过程】

    一、复习引入:

    1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

    2、教材中的章头引言;

    3、集合论的创始人——康托尔(德国数学家)(见附录);

    4、“物以类聚”,“人以群分”;

    5、教材中例子(P4)

    二、讲解新课:

    阅读教材第一部分,问题如下:

    (1)有那些概念?是如何定义的?

    (2)有那些符号?是如何表示的?

    (3)集合中元素的特性是什么?

    (一)集合的有关概念:

    由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

    定义:一般地,某些指定的对象集在一起就成为一个集合。

    1、集合的概念

    (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

    (2)元素:集合中每个对象叫做这个集合的元素

    2、常用数集及记法

    (1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作Nx或N+

    (3)整数集:全体整数的'集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R

    注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

    (2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Zx

    3、元素对于集合的隶属关系

    (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

    (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

    4、集合中元素的特性

    (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

    (2)互异性:集合中的元素没有重复

    (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

    5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

    ⑵“∈”的开口方向,不能把a∈A颠倒过来写

    三、练习题:

    1、教材P5练习1、2

    2、下列各组对象能确定一个集合吗?

    (1)所有很大的实数(不确定)

    (2)好心的人(不确定)

    (3)1,2,2,3,4,5.(有重复)

    3、设a,b是非零实数,那么可能取的值组成集合的元素是-2,0,2

    4、由实数x,-x,|x|,所组成的集合,最多含(A)

    (A)2个元素(B)3个元素(C)4个元素(D)5个元素

    5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

    (1)当x∈N时,x∈G;

    (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

    证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0x=a+b∈G,即x∈G

    证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

    ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

    ∵a∈Z,b∈Z,c∈Z,d∈Z

    ∴(a+c)∈Z,(b+d)∈Z

    ∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G

    【小结】

    1、集合的有关概念:(集合、元素、属于、不属于)

    2、集合元素的性质:确定性,互异性,无序性

    3、常用数集的定义及记法

    高中数学大单元教学设计5

    一、教材

    《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

    二、学情

    学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

    三、教学目标

    (一)知识与技能目标

    能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

    (二)过程与方法目标

    经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

    (三)情感态度价值观目标

    激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

    四、教学重难点

    (一)重点

    用解析法研究直线与圆的位置关系。

    (二)难点

    体会用解析法解决问题的数学思想。

    五、教学方法

    根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的.动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

    六、教学过程

    (一)导入新课

    教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的1处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

    教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

    设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

    (二)新课教学——探究新知

    教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

    判断方法:

    (1)定义法:看直线与圆公共点个数

    即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

    (2)比较法:圆心到直线的距离d与圆的半径r做比较

    (三)合作探究——深化新知

    教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

    已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

    让学生自主探索,讨论交流,并阐述自己的解题思路。

    当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

    (四)归纳总结——巩固新知

    为了将结论由特殊推广到一般引导学生思考:

    可由方程组的解的不同情况来判断:

    当方程组有两组实数解时,直线1与圆C相交;当方程组有一组实数解时,直线1与圆C相切;当方程组没有实数解时,直线1与圆C相离。

    活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

    (五)小结作业

    在小结环节,我会以口头提问的方式:

    (1)这节课学习的主要内容是什么?

    (2)在数学问题的解决过程中运用了哪些数学思想?

    设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

    作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

    高中数学大单元教学设计6

    一、单元教学内容

    (1)算法的基本概念

    (2)算法的基本结构:顺序、条件、循环结构

    (3)算法的基本语句:输入、输出、赋值、条件、循环语句

    二、单元教学内容分析

    算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的'作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

    三、单元教学课时安排:

    1、算法的基本概念3课时

    2、程序框图与算法的基本结构5课时

    3、算法的基本语句2课时

    四、单元教学目标分析

    1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

    2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

    3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

    4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    五、单元教学重点与难点分析

    1、重点

    (1)理解算法的含义

    (2)掌握算法的基本结构

    (3)会用算法语句解决简单的实际问题

    2、难点

    (1)程序框图

    (2)变量与赋值

    (3)循环结构

    (4)算法设计

    六、单元总体教学方法

    本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

    七、单元展开方式与特点

    1、展开方式

    自然语言→程序框图→算法语句

    2、特点

    (1)螺旋上升分层递进

    (2)整合渗透前呼后应

    (3)三线合一横向贯通

    (4)弹性处理多样选择

    八、单元教学过程分析

    1.算法基本概念教学过程分析

    对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

    2.算法的流程图教学过程分析

    对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

    3.基本算法语句教学过程分析

    经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

    九、单元评价设想

    1、重视对学生数学学习过程的评价

    关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

    2、正确评价学生的数学基础知识和基本技能

    关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

    高中数学大单元教学设计7

    一、教学内容分析

    圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

    二、学生学习情况分析

    我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

    三、设计思想

    由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

    四、教学目标

    1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

    2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

    3、借助多媒体辅助教学,激发学习数学的兴趣。

    五、教学重点与难点:

    教学重点

    1、对圆锥曲线定义的理解

    2、利用圆锥曲线的定义求“最值”

    3、“定义法”求轨迹方程

    教学难点:

    巧用圆锥曲线定义解题

    六、教学过程设计

    【设计思路】

    (一)开门见山,提出问题

    一上课,我就直截了当地给出例题1:

    (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

    (A)椭圆(B)双曲线(C)线段(D)不存在

    (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

    (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

    【设计意图】

    定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

    为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

    【学情预设】

    估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

    这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的`两个距离公式。

    在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

    (二)理解定义、解决问题

    例2:

    (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

    (2)在(1)的条件下,给定点P(-2,2),求|PA|

    【设计意图】

    运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

    【学情预设】

    根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

    (三)自主探究、深化认识

    如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

    练习:

    设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

    引申:若将点A移到圆C外,点M的轨迹会是什么?

    【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,可借助“多媒体课件”,引导学生对自己的结论进行验证。

    【知识链接】

    (一)圆锥曲线的定义

    1、圆锥曲线的第一定义

    2、圆锥曲线的统一定义

    (二)圆锥曲线定义的应用举例

    1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

    2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

    3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

    4、例题:

    (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

    (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

    (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

    5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

    七、教学反思

    1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

    2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

    总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

    高中数学大单元教学设计.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载

    高中数学大单元教学设计,欢迎大家转载和分享。分享网址:http://www.xs27.cn/wenku/jiaoxue/sheji/20331.html

    热门栏目